
X-582-73-371

FILTERING THEORY APPLIED
TO ORBIT-DETERMINATION

VICENTE- TORROGLOSA

-= EI OE CCL 22C Unclas
APPLIED TO 36510 csCI- 22 ica
gVq HC $6.25 G3/ 3 0 36510

DECEMBER 1973

.-i-- GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND



For information concerning availability
of this document contact:

Technical Information Division, Code 250
Goddatd Space Flight Center
Greenbelt, Maryland 20771

(Telephone 301-982-4488)



X-582-73-379

FILTERING THEORY APPLIED

TO ORBIT DETERMINATION

Vicente Torroglosa
INTA-ESRO*

December 1973

*Work performed under ESRO Applied Research Contract
No. 341/71/AR.

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland



FILTERING THEORY APPLIED
TO ORBIT DETERMINATION

Vicente Torroglosa

ABSTRACT

Modifications to the extended Kalman filter and the
Jazwinski filter are made and compared with the clas-
sical extended Kalman filter in applications to orbit
determination using real data. The results obtained
in this study show that with the kind of data available
today, the application of filtering theories in this
field presents many problems.
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LIST OF FIGURES

Figure Filter K, ao Po0  Biases ? Satellite Page

1 * 3 o Po No ERTS-1 6-6

2 * 3 2  Po0  No ERTS-1 6-7

3 * 100 02 Po0 No ERTS-1 6-8

4 EKF * 01 Po No ERTS-1 6-9

5 MEKF * 01 Po No ERTS-1 6-10

6 MJF * 02 P01 No ERTS-1 6-11

7 EKF 3 * P0 No ERTS-1 6-12

8 MJF 3 * Po No ERTS-1 6-13

9 EKF 10 02 * No ERTS-1 6-14

10 MJF 10 02 * No ERTS-1 6-15

11 * 10 01 Po3 No RAE-B 6-16

12 EKF * a Po3 No RAE-B 6-17

13 EKF 3 0i * No RAE-B 6-18

14 MEKF 10 01 Po * RAE-B 6-19

15 MJF 10 01 P04 * RAE-B 6-19

16 * 100 al PoI No IMP-J 6-20

17 * 10 oa PO No IMP-J 6-21

18 EKF * 01 P0  No IMP-J 6-22

19 MJF * 1a P No IMP-J 6-23

20 EKF 100 01 P * IMP-J 6-24

21 * 3 01 P No ERTS-1 6-25

22 EKF * 02 P01 No ERTS-1 6-26

23 MJF * 02 P1 No ERTS-1 6-27

24 EKF 3 * P No ERTS-1 6-28

25 MJF 3 * P No ERTS-1 6-29

Notes: 1) The different initial covariance matrices for the different satellites
may be seen in Tables 1, 2 and 3.

* The influence of this parameter is being studied.
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FILTERING THEORY APPLIED
TO ORBIT DETERMINATION

INTRODUCTION

After more than a decade of working with estimation theories and their possible
applications, no definitive conclusions had been obtained about whether or not
a filter can be used successfully in the orbit determination field.

To date most of the studies in this area have dealt with simulated data, and the
conclusions which have been reached are as follows:

1. The extended Kalman filter may be used successfully in the orbit
determination problem for short lengths of time, i.e., short arc
lengths.

2. For applications to longer spans of time, this filter should be modified
to avoid divergence. This problem occurs because of the lack of
knowledge of the dynamic system as well as the linearization of the
original problem. The adaptive filter seems to be the solution to this
problem.

This study is an attempt to find a way of applying such estimation theories to
real world orbit determination problems.

vii



EXTENDED KALMAN FILTER

Suppose that the equation of motion is described by the following nonlinear sto-
chastic differential equal ion

dx, = f (x, , r) dr + G (r) do, 7 > 0

x0  N(xo Po) (1-1)

formally equivalent to:

E[x o] o,

El(xo-Xo)(Xo-o) 
0 

(1-2))o (1-2)dx
dr - f (x' , ) + G (7) u,

Where:

x , the n X 1 state vector

f (x , 7 ) n X 1 continuous function vector

G (r) , n X r continuous function matrix

PT ,Tr> 0 , rX 1 Brownian motion process

(E {d3, dO, = Q(r)d r)

u, >O 0 , rX 1 White gaussian vector process

(u, N (0, Q(r) ), i.e., E [u ]= 0, E [u7 uf] = Q(7)

The discrete nonlinear observations can be expressed as

YK = h(K)+ VK '

vK  ~ N(0, O2K).

(These observations are taken at time instants tK and T = t - tK _ 1 ,(TK = tK - tK - 1).

Suppose that we generate a reference deterministic trajectory x,, satisfying
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dxO7
-= f (X,, T), T > 0. (1-4)dr

Define at each point in time

6 = xT -X ' (1-5)

which satisfies the equation

d (6xr)
d - f (x , r) - f (X, ) + G (r) u,

(1-6)

6x o ~ N (o Xo' Po)

If the deviations (6x) from the reference trajectory are small, a Taylor series
expansion gives

d (6x,)

dr - fx (x, 7) 6x, + G (r) u, (1-7)

where fx (xr, 7) is a function of time only, i.e., (1-7) is a linear system.

Defining the nominal measurement as

YK = h (XK) (XK = X ), (1-8)

then

YK = YK K = hx (XK) 6XK +VK'( 6 XK = XK) (1-9)

Equation (1-7) can be discretized as

rXK = '(tK tK - 1) XK - 1 WK (1-10)
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where 1P, the state transition matrix, is defined as:

dI) (t, tK - )

dt fx(x, 7) (t, tK - 1) (1-11)

with

S(tK - tK 1) = I, r= t - tK_ 1  (1-12)

and wK " N(0, QK), where

QK =ftK (tK, s)G(s) Q(s) G (s) IJ(tK,s)ds (1-13)

where

I(tK, s) = (4(tK, tK - 1) (D(tK _ 1' S) (1-14)

and

4)(tK _- , s) = D- l(s, tK - 1). (1-15)

Now the linear filter is directly applicable to-the linearized system (1-9 and
1-10) and the equations for 6 and P are as follows:

a. Prediction:

K/K-1 = '(tK tK ) 1) K-1/K- 1 (1-16)

PK /K - = (tK, ItKK - 1) P ('(tK, tK - 1) + QK (1-17)
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b. Update:

XK /K = 6 K /K-I +K) [5YK -h.( K) "K/K1] (1-18)

PKK = - K tK h XKK) PK K - I K  hX(XK )T + Kt K K 2 KTt K  (1-19)

The Kalman gain is

KtK =xK/K-I hXT( ) [hX( K)PK/K, h-xT()+oK2 . (1-20)

If the reference trajectory is chosen such that

x(0) = K- 1/K- 1 (1-21)

we have from (1-5)

kK-1/K-1 = E XK-1/K-1I - XK-1/K-1 =0 (1-22)

then from (1-16)

6 XK/K-1 = 0 (1-23)

and

XK/K-1 = E{x K/K- =E{6XK/K-1 +K/K-1 (1-24)

SXK/K-1.
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In the same way

K/K-1 
= E (XK/K- I - kK/K-1)(XK/K-1 K- K/K - )T  (1-25)

= E (6xK,/K- )( XKK-1)

and

E(XK/K - K/K)(XK/K - K/K )T  (1-26)

=K/K = E{(6XK/K K/K)}

Now we may state the evolution of the mean and the covariance matrix of the

state for the extended Kalman filter:

a. Prediction:

XK /K- 1 is obtained from

dS,

- = f( , 7-) (1-27)
dr

with

0 = K-I/K-1 (1-28)

for

T = TK tK - tK - 1 (1-29)

K/K - 1 (tK tK-1) PK - /K- 1 (tK tK - 1) + QK (1-30)
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b. Update:

kK/K = K/K-1 + Kt K [YK -h(K/K-1 (1-31)

The equations (1-19) and (1-20) remain unchanged.
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JAZWINSKI FILTER

In the orbit determination problem the equations of motion may be stated as

follows:

dV
d- fl(R, V, 7) + f2 (R, V, r) + G(r) u (2-1)

dR V (2-2)

dt

where:

f 1 , includes the accelerations that are well known

f 2 , possible unknown accelerations and the errors in f .

On short lengths of time, f2 can be taken as:

df
2

f2 = f2(r=O) +-- r. (2-3)dt (r=0)

u = f2(,=0) (2-4)

df 2d = 
(2-5)

dt (-=0)

then the equation (2-1) becomes:

dV
- f, (R, V, 7) + u + 6u (2-6)

dt

if the state noise is not included.
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The lack of knowledge of u and & makes it necessary to include these in the state
and estimate them as well as the usual state vector (position R and velocity V).

Now we may state the complete dynamical system

dR
- = V (2-7)dr

dVdr = f(R, V, r)+ u + ur (2-8)

dudu= u 
(2-9)

dr

du
= 0 (2-10)dr

The initial conditions for r = 0, ( t = tK -1 ), are

E RT:VT = ExT = :-1 (2-11)

Eju} = K-1 (2-12)

EL = UK -1 (2-13)

E(x - R) - k = PK-1/K-1 (2-14)

E(x k)(u-)T = Cu K-1/K-I (2-15)

E x- u- U = CuK-1/K-1 (2-16)

E (u- f)T =UUK-1/K-1 (2-17)
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E(u - )( - ) = U, - /  1 (2-18)

E(u- - =)T U. (2-19)

and the measurement model is

YK =1 (XKT K ) + VK t= tK (2-20)

where TK is a zero mean, white, gaussian noise sequence with

E{ K VK T= RK• (2-21)

The predictions for the estimate of the state (XK/K- 1, UK/K - UK/K - ) and the
estimate of the state covariance matrix for t = tK ( = TK tK tK - ) are:

XK/K - 1 = F(XK - 1/K - 1 UK - 1/K - 1' UK/K - I TK) (2-22)

UK/K - 1 = K - 1 + TK UK/K - 1 (2-23)

UK/K - 1 = UK - I/K - 1 (2-24)

PK/K - 1 K - 1/K -1 + CuK - 1/K - 1 TK - I/K - 1

+IU T U F + ( CuK' - dT + Vd C T *  4)T

UUK - 1/K -1 K 1/K K - 1/K - 1

+ uuK dT + pd UT . -T + d dUu K - dT (2-25)K - I/K - I UUK - 1/K - 1 K 1/K - 1

CUK/K - 1 = K - I/Ki - 1 UK - 1/K -

K (- 1/K - 1 U uK - 1/K - I d Uu K - 1/K - 1(
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CUK/K - K/K-1 UK - 1/K - 1 UK -/K1 K /K 1 (2-27)

U =U + rK (Uu + U T

UUK/K - UU K - 1/K - 1 K - 1/K - 1 UUK - 1/K - 1

+r U
K UuuK - 1/K - 1) (2-28)

UUK/K - 1 uuK - 1/K -1 K K - 1/K U +K U (2-29)

U- = U- (2-30)
UUK/K - 1 K - 1/K -

where:

aXK
=K/K = K - 1 (2-31)

=xK I

K/K -1 -- (2-32)

axK 1
Od 4.d K/ WK T (2-33)

(D is the state transition matrix and I, 3 X 3, Identity matrix.

The update at observation K is:

XK/K = XK/K x [YK -h(K/K -17K)] (2-34)

K/K =UK/K- 1 + Ku [YK h(K/K - I' K) (2-35)

K/K UK/K -1 +KYK K/K -1 (236)
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PK/K = PK/K-1 - Kx hx PK/K-1 (2-37)

CUKK = Cu/K -Kx hx CUK/K-1 (2-38)

UK/K UK/K-I X X UK/K-I (2-39)
CUK/K = C. - Kx hx Cu K  (2-39)

U =U -K hCuuK/K UUK/K-1 Ku h CuK/K-1 (2-40)

U =U - K hX C.

uu/K uuK/K- 1  u X K/K-1 (2-41)

U* =U -Ku h.C (2-42)
uuK/K K/K-I h x CuK/K-1 (2-42)

where:

hx = hx = X XK/K-I = 7K (2-43)

Kx =KxK = PK/K-I h x K (2-44)

Ku = KuK = CTUK/K-1 h x Y-lK (2-45)

K. = KUK = CT UK/K-I h x Y-1K (2-46)

YK = hx PK/K-I hT x + RK (2-47)

The following initial conditions are to be specified

o/o, P0 / 0 , UU 0o/o, Uuuo/o (2-48)

whereas

Uo/o, Uo/o (2-49)

are externally set to zero for lack of bettv; i:formation.
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The inclusion of Equation (2-42) is the main difference between the filter de-

scribed here and that of Reference 1. This inclusion avoids the covariance

matrix of the state from becoming non-positive definite.
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III

MODIFICATIONS

Several modifications have been made to the previous filters in an attempt tp

solve some problems associated with their performance.

The main problem related to the EKF is the modeling of state noise. The as-

sumption of white gaussian noise seems to be poor. But if we accept this

assumption, we must still assign proper values for the variance.

On the other hand, the errors of modeling the dynamical system should be

taken into account to avoid the filter divergence. The optimistic performance

of the EKF without state noise leads to a growing difference between the actual

state and the estimated state not reflected in the covariance matrix which

continues to decrease as more observations are given. The filter divergence

manifests itself in a secular growth of the predicted residuals which become

clearly biased.

In an attempt to avoidthe divergence in the EKF, while maintaining its simplicity,
a modification has been made in the definition of the Kalman gain. This

modified filter is going to be called MEKF.

The definition for the Kalman gain in the MEKF is

KM(tK) = K (tK) (1 +QK )  (3-1)

where:

QK = n-l QK-1 +nQr (3-2)

and

Kr ' r K-h(x K/K-1<0 (3-3)
Q'r , otherwise
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where:

r = r-1 [Y K-h(xK/K-1 (3-4)

and KtK is given in (1-20). 1 is different for each observation type and station,
and Z0 = 0.

This modification tries to avoid the increase in the mean of the residuals
which are the main manifestation of the divergence. In this way the direction
is kept but its magnitude is modified to avoid the filter divergence.

The third filter tested in this study has been a modification of the Jazwinski
Filter described in Chapter II.

This filter is going to be called MJF and tries to make the JF adaptive.

The Jazwinski Filter shows great sensitivity to the values assigned to the
initial covariances of u and d. It seems desirable to have the ability to set
these values correctly and automatically.

The covariance matrix of i can be used to regulate the process, so that the
residuals are consistent with their statistics.

Assume that in each step we know U*u except for a factor. That is, if U is
the covariance matrix given in the process described in Chapter II, the actual
covariance matrix, U'uu , is going to be:

U -/ =(1 + )Up (3-5)U UK-1/K- 1  +qt k )Ui K-1/K-1

and the covariance matrix of the state is

P' K/K-1 = PK/K-1 + QK *dUt 11d T

We now define
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n-i 1 [Y K h(K/K-1)]2

r n r-l n[hx PK/K-1 hx + K(3-6)

Then

(hx PK/K-1 hxT + K) r = ErK}2 (3-7)

where

r = [K h(2K/K-1)2 (3-8)

and

E{r2}= hx PK/K-1 hxT + + qK 'hxd P IdThxT  (3-9)

S (qr- 1) (hx PK/K-I hxT + UK) ifpositive (3-10)
, if positive (3-10)

hx 'd P PdT hx

o , otherwise

n-1 1
qK = - qK-I + - qK (3-11)

K 11 K-1 n

To avoid the accumulating corrections in successive observations, after

setting the new value u d, qK is reset to

n- 1 I + qK
-- -if positive

n n 1 + qK
qK 0 , otherwise (3-12)
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A further step to completely automate the process would be the initialization
of Uuu and U . In the filter tested in this paper this is done by setting

U o Kf PON fl T (3-13)

d d
U*. =K_(fl )PO/ (f I T) (3-14)

dt'0/0 dt

where K << 1, usually K = 10-6 .
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IV

COMPUTATIONAL METHODS

The propagation of the state has been made by numerical integration of the

Cowell Equations of motion and the state transition matrix by numerical inte-
gration of the variational equations.

To obtain accurate propogation of the state using the least possible computer

time, two different integration methods as well as two force models have been

used.

These two options are:

1. Numerical integration by a fourth order Runge-Kutta of the equations

of motion and variational equations with a gravity field including only
J 2 for equations of motion and variational equations.

2. Numerical integration by a 12th order summed Adams-Cowell
predictor-pseudo corrector of the equations of motion and using
an 8th order summed Adams-Cowell corrector only for varia-
tional equations, the gravity field being 4 by 4 for equations of mo-
tion and J 2 only for variational equations.

The decision to use one or the other was made by evaluating the number of
times that the forces had to be evaluated in each case to perform a given
propagation taking into account the different force model used in each case.

It was decided to use option 1 only if the number of force evaluations was less
than or equal to forty for the propagation to the next data point.

It is possible to have a good estimate of this number by assuming the step size
used in option (1) satisfies:

0.05 e < 0.2
h = Q R2 /p, Q =

0.01 e > 0.2
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V

CASES STUDIED

Three different satellites have been studied in this paper. Two of them have

very high eccentricity (RAE-B and IMP-J, transfer orbit), and the third is a

near circular, almost polar orbit (ERTS-1).

1) The initial conditions for each of these satellites follow.

a) RAE-B
Epoch: June 10, 1973 - 15 hr. 22 min. 19.9461 sec.

Initial state:

a o  = 198835.0 Km X 0 = -19587.57 Km

eo = .9669928 Yo = - 2927.08 Km

S = 29.11926 deg. Zo = - 8341.75 Km

2 o  = 319.3744 deg. X o = - 3.584823 Km/sec.

w o  118.5193 deg. o = - 3.735018 Km/sec.

M o = 1.321811 deg. Zo = - 2.879267 Km/sec.

Coordinate system: Mean equator of 1950

Four different initial covariance matrices have been used. Po3 and P0 4 are

chosen arbitrarily to be diagonal. Pol and P02 are computed by means of a

simulation starting with P 0 3 and P 0 4 . The procedure is to start with the epoch

June 10, 1973, 25 hr 22 min 19.9461 sec and integrate the state backwards

to June 10, 1973, 14 hr 28 min 47.966 sec. At this time initialize the filter

with P 0 3 and P 0 4 . Propagate these to the original epoch. These propagated

values are then used for Po0 and P 0 2 . This procedure helps to eliminate the

transient response of the filter.

b) IMP-J

Epoch: September 26, 1973 - 2 hr. 38 min. 15 sec.

Initial state:

a o  = 124510.0 Km X0 = 5649.6 Km

e o  = .94719 Yo = 2453.8 Km

io  .2867085 deg. Z o = 2434.5 Km

2o = 249.7624 deg. Xo = - 2.07466 Km/sec.

WO 120.1121 deg. o = 10.1934 Km/sec.

M o  .08634 deg. Zo 2.9925 Km/sec.
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Coordinate system: Mean equator of 1950

The initial covariance matrix (Table 2) was calculated by the Monte Carlo
method.

c) ERTS-1
Epoch: August 9, 1972 - 15 hr. 15 min. 0 sec.
Initial state:

a 0  = 7283.213 Km X0 = 1906.134 Km
eo = .001863498 Yo = -4009.233 Km
i0  = 98.99210 deg. Z o = -5789.823 Km

=20 = 283.5776 deg. X 0 = .7200720 Km/sec.
o = 148.0186 deg. Yo = - 5.932595 Km/sec.

Mo = 158.4419 deg. Zo = 4.338789 Km/sec.

Coordinate system: Mean equator of 1950

Two different covariance matrices (PO , P 0 2 ) have been used for this case.

Po has been calculated in the same way as P 0 1 and P 0 2 for RAE-B. The
state was projected back to August 9, 1973 - 13 hr. 31 min. 0 sec.
P0 2 has the same diagonal as P but the off- diagonal elements are zero.

2) The observations used for each satellite follow.

a) RAE-B
Observation span:

Start time: June 10, 1973 - 15 hr. 22 min. 20 sec.
End time : June 11, 1973 - 2 hr. 38 min. 46.254 sec.

Total number of observations: 233
Data types: VHF range (p), range rate (p) and

minitrack direction cosines (2 ,M)

From a statistical point of view these observations are not good and it is
difficult to get a D.C. solution from them. Some biases appeared as:

* CARVON range bias of 480 m.
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* CARVON range rate bias of 1.32 m/sec.

* MADGAR range rate bias of .32 m/sec.

The distribution of these observations is nonuniform.

The measurement standard deviations are:

op = 150 m o = 0.0003 radians

O = 20 cm/sec. a = 0.0003 radians

b) IMP-J
Observation span:

Start time: Sep. 26, 1973 - 3 hr. 2 min. 21.052 sec.

End time : Sep. 26, 1973 - 11 hr. 35 min. 37.254 sec.

Total number of observations: 387

Data type: VHF and Minitrack

These observations are similar in quality to the previous ones. Biases appeared

smaller and were not taken into account.

Two sets of measurement standard deviations were assumed:

1. New:

o = 100 m a = 0.0001 radians

P = 20 cm/sec. m 
= 0.0063 radians

2. Standard:

a 500m = 0.0003 radians

= 30 cm/sec. m = 0.0003 radians

c) ERTS-1
Observation span:

Start time: Aug. 9, 1973 - 15 hr. 15 min. 0 sec.

End time : Aug. 9, 1973 - 23 hr. 26 min. 0 sec.

Total number of observations: 863

Data type: USB range and angles
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These observations are the best of the three cases. No biases appeared, but
the Y angle measurement did not improve the solution.

Two sets of measurement standard deviations were assumed:

1. New:

ao = 10 m x,30 = 100 sec. of arc.

SaY30 = 100 sec. of arc.

2. Standard:

op = 20m ax 30 = 200 sec. of arc.
aY30 = 200 sec. of arc.

In all the cases measurements were corrected by

* Refraction

* Transponder delay

* Light time

The observations were edited by:

* Elevation angle

* Amount of the refraction correction

* ko criterion, i.e., the residual must satisfy

Yk-h (Xk/k-1)< ko (h x PhT + k)
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VI

RESULTS

The filter errors plotted in Figures 1 through 25 are the result of comparing

the filter estimate with the DC (iterated weighted least squares) solution.

These DC solutions have been chosen as "true solutions" for lack of better

information. The observation spans used for these solutions were longer than

those used in the filter runs.

The ERTS-1 DC solution is more reliable than those for RAE-B and IMP-J,

but the wider scale errors for these two satellites make the results equally

reliable. In Figures 1 through 20 are plotted differences between the filter

estimates and the DC solution

a. Along track:

(RF - RDC). VDC VDC -1

b. Cross track:

I I RF - RDCI-(RF- RDC) VDC I VDC I-1

c. Velocity

I V F -VDC

In Figures 21 through 25 are plotted normalized position and velocity error,
that is:

a. Normalized position errors:

I RF - RDC I * (P 11 + P 2 2 + P 3 3 -1/2

b. Normalized velocity errors:

I VF - VDC I (P 4 4 + P55 + P66 -1/2

Figures 1 through 10, and 21 through 25 refer to ERTS-1; Figures 11 through

15 to RAE-B, and Figures 16 through 20 to IMP-J.

Figures 1, 2 and 3 compare the errors for the three different filters tested in

this study, for ERTS-1. The improvement of MEKF appears slight, but both
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of them show great differences from MJF. From observation 243 to 244 there
is a time difference of 5 hr. 15 min.; from 516 to 517, 1 hr. 26 min., and from
736 to 737, 39 min. These three gaps may be seen clearly in those figures as
discontinuities. The three filters are sensitive to them but this sensitivity is
much greater for MJF. This could be expected since the approximation made
in MJF is good only for short spans of time. For these relatively large gaps the
covariance matrix of the state grows too much (the factor is - t 3 for some
terms) making the corrections too large.

Figures 1 and 2 differ in the values assumed for the standard deviations of the
observations, o, = 10 m, Ox30 = =Y30 = 100 sec. of arc for Figure 1, and
op = 20 m,ax 3 0 =Oy 30= 200 sec. of arc for Figure 2 (and 2). K is 3 for these
figures and 100 for Figure 3. The sensitivity due to these is not easily ex-
plainable unless the characteristics of the observations are taken into account.
In this case the Y-angle measurement is very poor while range is the most
reliable measurement. By increasing the standard deviations of all of them by
the same ratio the filter is opened, this means that more observations are going
to be included, but this only favors the inclusion of more Y-angle measurements
causing the relative weight of the range to decrease in some stages of the
process, thus impairing the solution.

The irregular influence of this factor may also be seen in Figure 7 (EKF) and
Figure 8 (MJF).

The precision reached is about 500 m in position and 50 cm/sec. in velocity
for EKF and MEKF and about 3 km and 2 m/sec. for MJF, after the first good
data (range) of the second station are processed. This happens about the 300th
observation. The precision for EKF and MEKF is intermediate between the
level of precision used for Range (10 m) and angle (100 sec. of arc - 1 km).

The influence of poor angle measurements seems to be stronger in the MJF.
Uy grows too much to adapt to the residuals of this measurement and this is
reflected particularly in errors in velocity where there is no direct observa-
bility, coupling in the covariance matrix caused by Uj is more difficult to
control in the velocity states.

For RAE-B (Figure 11) differences between the filters seems to be smaller.
The noise used for these observations are a, = 100 m, o, = 20 cm/sec.,
au = oM = 0.0003. The initial state is quite close to the actual one. Some kind
of divergence happens in this case, the position error grows almost steadily
from 2 km to about 30 km in the 15 hours of process while the velocity error
grows to 750 cm/sec. at the beginning, and ending at about the same level that
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it began, 60 cm/sec. However this kind of divergence is different from the

result of modeling. In this case it seems to be caused by too few observations.

For IMP-J (Figures 16 and 17) the noises have been the same as those used

for RAE-B. In Figure 16, k a =100 and Figure 17, ko =10. The results

shown in Figure 17 are similar to those for RAE-B. The position errors that

start at 50 km decrease at the beginning as many good observations are proc-

essed, and grow thereafter to about 250 km at the end of 8 hours of data

as the observation rate decreases. The velocity errors that started at about

18 m/sec. grow sharply at the beginning then decrease to a level of 16/seco

at the end.

The results with k, = 100 (Figure 16) are quite different. After processing

200 observations and tracking the state better than with ko = 10 (the position

error is now 10 km and the velocity error about 1 m/sec.), the performances

of the different filters change completely. The MJF with a covariance matrix

which has grown is very sensitive to bad observations and large oscillations

begin, thus tracking the state very poorly. The EKF and MEKF continue tracking

the state with approximately the same level of error. In this case the EKF

shows itself far superior to the other two filters.

The influence of K , seems to be different for each case as the characteristics

of the observations change. (See Figures 4 (EKF), 5 (MEKF) and 6 (MJF) for

ERTS-1; Figure 12 (EKF) for RAE-B, and Figures 18 (EKF) and 19 (MJF) for

IMP-J.) When the assumption of white noise on observations is close to reality

and enough observations are available as it happens in ERTS-1 data, Ko =3 is the

the best possible value. The inclusion of more observations, or increasing
the noise on the observations, or increasing Ko deteriorates the filter perfor-
mances. For RAE-B and IMP-J the assumption of white noise is unrealistic,
at the same time the observation rate is very low. In this case the EKF and

MEKF work much better than MJF and their performances improve from

k, = 10 to k, = 150. For RAE-B the divergence that appeared with k, = 10

disappears with k, = 150, though the error continues being large (10 km in

position and 80 cm/sec. in velocity). In the IMP-J case the improvement is even

greater.

The influence of the initial covariance matrix can be seen in Figures 9 (EKF)
and 10 (MJF) for ERTS-1 and Figure 13 (EKF) for RAE-B. The EKF and
MEKF show greater influence to this parameter than MJF does. The adaptive-
ness of the MJF causes the initial values to be quickly forgotten. This inde-
pendence is highly desirable since the initial conditions are not well known.
Figure 13 shows how the covariance matrix calculated as described in Chapter

V eliminate the transition period.
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Although the estimation of parameters other than the state is possible and the

filters tested in this study are being implemented to have this capability, only

the estimation of biases is available so far. Figure 14 (EKF) and Figure 15

(MJF) for RAE-B and Figure 20 (EKF) for IMP-J show the difference between

estimation and no estimation of biases, and it is very simple to deduce that

there is not enough information in the observations to estimate these other

parameters. The improvement made by the inclusion of estimation of biases

is questionable if the data rate is not adequate.

Figures 21 through 25 show how the covariance matrix reflects the actual errors

for the different filters in the ERTS-1 case. The errors are normalized with

their standard deviations as given by the covariance matrix. Assuming that

filter errors are normally distributed the values plotted in these figures should

be less than 1 in 66% of the cases. As may be seen in these figures the covari-

ance matrix is too optimistic reflecting the actual filter errors. The difference

between actual and expected errors is stronger for EKF, decreases for MEKF

and is the least in the MJF as may be seen in Figure 21. Figures 22 and 23

study the influence of k,. This factor is more important from this point of view
for EKF than for MJF as may be expected. The assumption of larger observa-

tion noises makes the covariance matrix reflect a degree of pessimism.
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Figure 21. Comparison of Filter Errors (ERTS-1)
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Figure 24. Comparison of Filter Errors (ERTS-1)
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Figure 25. Comparison of Filter Errors (ERTS-1)
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Table 1

Initial Covariance Matrices For RAE-B

Pol

0.2876E0 .2284E0 - .7631E0 .1207E-3 .8619E-4 -. 2703E-3

.2668E0 - .5675E0 .9615E-4 .1102E-3 -. 2144E-3

0.2061E1 -. 3191E-3 - .2088E-3 .7275E-3

.5539E-7 .4273E-7 -. 1244E-6
.5647E-7 -. 9634E-7

.2966E-6

P02

.1348E0 .1165E0 - .3458E0 .4113E-4 .2771E-4 -. 8272E-4
.1508E0 - .2803E0 .3513E-4 .4302E-4 -. 6686E-4

.9234E0 -. 1104E-3 -. 6202E-4 .2222E-3

.1631E-7 .1111E-7 -. 3062E-7
.1801E-7 -. 2065E-7

.6980E-7

Po3

1. 0. 0. 0. 0. 0.
1. 0. 0. 0. 0.

1. 0. 0. 0.
1.E-4 0. 0.

1.E-4 0.
1.E-4

P
04

0.1 0. 0. 0. 0. 0.
0.1 0. 0. 0. 0.

0.1 0. 0. 0.
1.E-6 0. 0.

1.E-6 0.
1.E-6
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Table 2

Initial Covariance Matrix For IMP-J

POi

.8891E0 -. 5432E0 .9765E-1 .2865E-2 -. 4460E-3 .8015E-6
.2935E0 -. 6129E-1 -. 1445E-2 .4413E-3 -. 1972E-3

.9042E0 .2204E-3 .3102E-3 .3078E-2
.2804E-2 .2736E-3 -. 6640E-4

.1986E-3 .6082E-3
.2693E-2

Table 3

Initial Covariance Matrix For ERTS-1

.1817E-2 .2447E-3 .4235E-3 -. 3340E-5 -. 7459E-6 -. 4287E-6
.2877E-3 -. 2601E-3 -. 4989E-6 -. 2645E-6 -. 4263E-6

.5127E-3 -. 7031E-6 .3132E-7 .3739E-6
.6177E-8 .1408E-8 .8776E-9

.4132E-9 .4116E-9
.6443E-9
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VII

CONCLUSIONS AND RECOMMENDATIONS

Results show that the application of sequential filtering theory to orbit deter-

mination with the kind of data available today presents many problems. The

precision reached, although in some cases comparable with that obtained in an

iterative batch process (DC), is almost always lower.

The observations have to fulfill some necessary conditions for successful appli-

cation of the filtering theory to this field, and this condition seems to be more

strict than those required for a batch process. In this case the problem of esti-

mation of the state is completely separated from that of estimation of the uncer-

tainties of that state. In the sequential process these two problems are totally

coupled so that the real number of parameters to be estimated is bigger in this

case. The necessary condition that the observations have to accomplish is to

restore the deterioration suffered by the state and its covariance matrix between

observations. With an observation rate lower than this, the filter may diverge

and only with a higher rate than that minimum one, may the estimation of the

state improve. That minimum rate depends on the orbit type and observation

type.

With these conditions accomplished, and with an initial covariance matrix

perhaps improved by simulating, it seems feasible to use the filtering theory as

an early orbit determination system in which raw data are used. In this work

only the USB data used for ERTS-1 were raw. The improvement of the estima-

tion by using raw data instead of smooth data has not been evaluated. Neverthe-

less, since in every smoothing process some information is lost, the results

are going to be improved if this information is retained.

The potential recovery capability of the MJF has not been tested in this study

since the possibility of doing so with the data used in this work seemed dim.

The errors in the estimation of the state make the values obtained for the un-

modeled accelerations completely unworthy. If the filter does not track the

state correctly, this means that the unmodeled accelerations are not being

tracked either, since the two problems are totally correlated. Potential re-

covery would require a much better tracking system, with almost continuous

coverage.

The assumption of white noise for the observation noise is not real in most of

the cases. This fact has more influence in the sequential processes than in the

batch process. Another, more exact error model should be found in order that

successful results in the high precision fast orbit determination problem can be

realized.
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